Category Archives: Research

Random Dilation Networks for Action Recognition in Videos

Lately, we (TwentyBN) took a part in Activity Net trimmed action recognition challenge. The dataset is called Kinetics and recently released. It is a collection of 10 second YouTube videos. Each video has a single label among 400 different action classes. The dataset released by DeepMind with a baseline 61% Top-1 and 81.3% Top-5. For baseline models please refer to their dataset paper. But, it took 2 months for people to briskly hoist the bar high above.

ActivityNet 2017 results from CVPR workshop presentation.

 

As you might see above, we have the best Top-5 accuracy with 97% which is ~16% improvement on top of the baseline. The average of Top-1 and Top-5 decides the leader-board which places us to 3rd place. Yet, it is a great result for us where we could dabble only 2 weeks with limited juice. Team matters here!! Thx to my mates Raghav Goyal and Valentin Haenel for being great.

Here, I like to succinctly describe our novel network architecture. It has the best single network performance. (We plan to share a more detailed description in a separate Medium soon.) Namely, it is called BesNet due to a cheap cryptographic reason :). BesNet yields 74% Top-1 with only RGB . It is half-size of the baseline network described in the DeepMind paper.

In detail, BesNet is devised on top of ResNet-50 architecture. Distinctly, BesNet performs 3D convolutions that are able to learn both spatiotemporal features. In a better extent, BesNet takes not a single frame, but a set of frames from a video. It convolves pixels between consecutive frames as wells as single frame pixels. Each ResNet-50 module buckled with 1x1 + 3x3 +1x1 filters in order. Each such module followed by a residual connection coming from preceding module. It uses ReLU activation followed by a Batch-Normalization for each layer. In order to convert Resnet-50 to BesNet, we inflate 1x1 filters to 3x1x1 filters and 3x3 filters to 1x3x3 filters where the ordering of the dimensions is sequence x height x width. After convolution layers, an average pooling layer aggregates spatial dimension as in the normal ResNet. Subsequently, a max pooling layer aggregates temporal dimensions. A fully-connected layer used for predictions.

BesNet is initialized with ImageNet weights. In order to convert 2D filter weights to 3D filter weights, we replicate 2D filters along an additional dimension and then normalize the weights by the replication factor. This normalization keeps the activation values stable despite the architectural change. For example, a 1x1 filter is converted to 3x1x1 by copying the 1x1 filter 3 times along the third dimension and weights are divided by 3 at the end.

In BesNet, 3x1x1 filters are responsible for temporal and spatial cross-channel regularities. 1x3x3 filters pay into only spatial properties of individual feature maps. This orientation excites several observations. First off, it decouples temporal and spatial computations. It learns specialized layers for each of the temporal and spatial dimensions. The idea also entertained by the pooling layers. We decomposed spatial and temporal dimension over average and max pooling layers respectively. BesNet reduces the spatial dimensions along the convolutional layers yet it keeps the size of temporal dimension constant. This makes BesNet flexible to handle videos with different number of frames. Hence, given a video with K frames, BesNet keeps the temporal dimension as K until the pooling layers. Thereafter, max pooling layer aggregates K temporal channels into one. In a practical sense, this is easy with a dynamic computational graph library. Pytorch is a bliss here !! (Sorry TF, You're so crusty.)

BesNet module excluding residual connection. d [1,2] describes random selection of dilation factor between 1 or 2. Dimensions are sequence x height x width.

BesNet has a peculiar use of dilation in 3x1x1 layers which defines the real novel aspect of our architecture. BesNet uses dilation only on temporal dimension and it picks a random dilation factor per 3x1x1 layer for each mini-batch. It sets padding parameters in accordance to keep the temporal dimension unchanged. At the test time, each layer computes outputs for each possible dilation factor, then takes the average of the output feature maps. Random dilation enables the network to learn complex temporal relations. It also regularizes the network in the temporal domain. In practice, it reduces the effect of FPS used for casting videos into frames.

 

Dilation in 1D with increasing dilation factor per layer. The aim here to increase receptive field exponentially with less network paramerters. In our case we set dilation factor random thus our network is able to learn more  relations that are also corresponding to gray shade nodes and connections.

 

We discuss that for Kinetics, it is important to learn long range relations between frames. Videos are long and they have only a single label. So the network needs to learn the general context of the video. In that sense, small motions that are observed by a normal 3D convolution are not that important. Random dilation pays into this. It augments the contextual temporal window of the network.

Our experiments with only frame futures support our hypothesis here. We extracted frame features with ResNet-50 and train an MLP after pooling the features. It gets 65% accuracy. It is better than DeepMind's baseline network with 3D convolution layers. That shows us contextual information means more than motion learned by 3D layers.

Motion information might be complementary but not the core. It is then verified by the random dilation. BesNet with no dilation results 70% , dilation 2 68% and the random dilation 74% accuracy. This stands to be a simple empirical proof backing our claim here.

Random dilation is really easy to implement with Pytorch. Just take normal Conv class and overwrite its forward pass by randomizing dilation parameter. If you like to try out before we release fell free.

I try to give a very sketchy description of BesNet here by no means complete. Please ping me if you have any question. We plan to study BesNet a little more and share it in the near future in legit formats. We also plan to share a finer description of our challenge approach with some open-source enjoyment.

Please note that BesNet is a work in progress. Anyways, feedbacks are always warmly welcome. Best :).

 

Share

Duplicate Question Detection with Deep Learning on Quora Dataset

Quora recently announced the first public dataset that they ever released. It includes 404351 question pairs with a label column indicating if they are duplicate or not.  In this post, I like to investigate this dataset and at least propose a baseline method with deep learning.

Beside the proposed method, it includes some examples showing how to use Pandas, Gensim, Spacy and Keras. For the full code you check Github.

Data Quirks

There are 255045 negative (non-duplicate) and 149306 positive (duplicate) instances. This induces a class imbalance however when you consider the nature of the problem, it seems reasonable to keep the same data bias with your ML model since negative instances are more expectable in a real-life scenario.

When we analyze the data, the shortest question is 1 character long (which is stupid and useless for the task) and the longest question is 1169 character (which is a long, complicated love affair question). I see that if any of the pairs is shorter than 10 characters, they do not make sense thus, I remove such pairs.  The average length is 59 and std is 32.

There are two other columns "q1id" and "q2id" but I really do not know how they are useful since the same question used in different rows has different ids.

Some labels are not true, especially for the duplicate ones. In anyways, I decided to rely on the labels and defer pruning due to hard manual effort.

Proposed Method

Converting Questions into Vectors

Here, I plan to use Word2Vec to convert each question into a semantic vector then I stack a Siamese network to detect if the pair is duplicate.

Word2Vec is a general term used for similar algorithms that embed words into a vector space with 300 dimensions in general.  These vectors capture semantics and even analogies between different words. The famous example is ;

king - man + woman = queen.

Word2Vec vectors can be used for may useful applications. You can compute semantic word similarity, classify documents or input these vectors to Recurrent Neural Networks for more advance applications.

There are two well-known algorithms in this domain. One is Google's network architecture which learns representation by trying to predict surrounding words of a target word given certain window size. GLOVE is the another methos which relies on co-occurrence matrices. GLOVE is easy to train and it is flexible to add new words out-side of your vocabulary. You might like visit this tutorial to learn more and check this brilliant use-case Sense2Vec.

We still need a way to combine word vectors for singleton question representation. One simple alternative is taking the mean of all word vectors of each question. This is simple but really effective way for document classification and I expect it to work for this problem too.   In addition,  it is possible to enhance mean vector representation by using TF-IDF scores defined for each word. We apply weighted average of word vectors by using these scores. It emphasizes importance of discriminating words and avoid useless, frequent words which are shared by many questions.

Siamese Network

I described Siamese network in a previous post. In short, it is a two way network architecture which takes two inputs from the both side. It projects data into a space in which similar items are contracted and dissimilar ones are dispersed over the learned space. It is computationally efficient since networks are sharing parameters.

Siamese network tries to contract instances belonging to the same classes and disperse instances from different classes in the feature space.

 

Implementation

Let's load the training data first.

For this particular problem, I train my own GLOVE model by using Gensim.

The above code trains a GLOVE model and saves it. It generates 300 dimensional vectors for words. Hyper parameters would be chosen better but it is just a baseline to see a initial performance. However, as I'll show this model gives performance below than my expectation. I believe, this is because our questions are short and does not induce a semantic structure that GLOVE is able to learn a salient model.

Due to the performance issue and the observation above, I decide to use a pre-trained GLOVE model which comes free with Spacy. It is trained on Wikipedia and therefore, it is stronger in terms of word semantics. This is how we use Spacy for this purpose.

Before going further, I really like Spacy. It is really fast and it does everything you need for NLP in a flash of time by hiding many intrinsic details. It deserves a good remuneration.  Similar to Gensim model, it also provides 300 dimensional embedding vectors.

The result I get from Spacy vectors is above Gensim model I trained. It is a better choice to go further with TF-IDF scoring.  For TF-IDF, I used scikit-learn (heaven of ML).  It provides TfIdfVectorizer which does everything you need.

After we find TF-IDF scores, we convert each question to a weighted average of word2vec vectors by these scores. The below code does this for just "question1" column.

Now, we are ready to create training data for Siamese network. Basically, I've just fetch the labels and covert mean word2vec vectors to numpy format. I split the data into train and test set too.

In this stage, we need to define Siamese network structure. I use Keras for its simplicity. Below, it is the whole script that I used for the definition of the model.

I share here the best performing network with residual connections. It is a 3 layers network using Euclidean distance as the measure of instance similarity. It has Batch Normalization per layer. It is particularly important since BN layers enhance the performance considerably. I believe, they are able to normalize the final feature vectors and Euclidean distance performances better in this normalized space.

I tried Cosine distance which is more concordant to Word2Vec vectors theoretically but cannot handle to obtain better results. I also tried to normalize data into unit variance or L2 norm but nothing gives better results than the original feature values.

Let's train the network with the prepared data. I used the same model and hyper-parameters for all configurations. It is always possible to optimize these but hitherto I am able to give promising baseline results.

Results

In this section, I like to share test set accuracy values obtained by different model and feature extraction settings.  We expect to see improvement over 0.63 since when we set all the labels as 0, it is the accuracy we get.

These are the best results I obtain with varying GLOVE models. they all use the same network and hyper-parameters after I find the best on the last configuration depicted below.

  • Gensim (my model) + Siamese: 0.69
  • Spacy + Siamese :  0.72
  • Spacy + TD-IDF + Siamese : 0.79

We can also investigate the effect of different model architectures.  These are the values following  the best word2vec model shown above.

  • 2 layers net : 0.67
  • 3 layers net + adam : 0.74
  • 3 layers resnet (after relu BN) + adam : 0.77
  • 3 layers resnet (before relu BN) + adam : 0.78
  • 3 layers resnet (before relu BN) + adam + dropout : 0.75
  • 3 layers resnet (before relu BN) + adam + layer concat : 0.79
  • 3 layers resnet (before relu BN) + adam + unit_norm + cosine_distance : Fail

Adam works quite well for this problem compared to SGD with learning rate scheduling. Batch Normalization also yields a good improvement. I tried to introduce Dropout between layers in different orders (before ReLU, after BN etc.), the best I obtain is 0.75.  Concatenation of different layers improves the performance by 1 percent as the final gain.

In conclusion, here I tried to present a solution to this unique problem by composing different aspects of deep learning. We start with Word2Vec and combine it  with TF-IDF and then use Siamese network to find duplicates. Results are not perfect and akin to different optimizations. However, it is just a small try to see the power of deep learning in this domain. I hope you find it useful :).

Updates

  • Switching last layer to FC layer improves performance to 0.84.
  • By using bidirectional RNN and 1D convolutional layers together as feature extractors improves performance to 0.91. Maybe I'll explain details with another post.
Share

Ensembling Against Adversarial Instances

What is Adversarial?

Machine learning is everywhere and we are amazed with capabilities of these algorithms. However, they are not great and sometimes they behave so dumb.  For instance, let's consider an image recognition model. This model  induces really high empirical performance and it works great for normal images. Nevertheless, it might fail when you change some of the pixels of an image even so this little perturbation might be indifferent to human eye. There we call this image an adversarial instance.

There are various methods to generate adversarial instances [1][2][3][4]. One method is to take derivative of the model outputs wrt the input values so that we can change instance values to manipulate the model decision. Another approach exploits genetic algorithms to generate manipulative instances which are confidently classified as a known concept (say 'dog') but they are nothing to human eyes.

Generating adversaries by genetic algorithm [1]

Generating adversaries by input gradient [2].

So why these models are that weak against adversarial instances. One reliable idea states that because adversarial instances lie on the low probability regions of the instance space. Therefore, they are so weird to the network which is trained with a limited number of instances from higher probability regions.

That being said, maybe there is no way to escape from the fretting adversarial instances, especially when they are produced by exploiting weaknesses of a target model with a gradient guided probing. This is a analytic way of searching for a misleading input for that model with an (almost) guaranteed certainty. Therefore in one way or another, we find an perturbed input deceiving any model.

Due to that observation, I believe that adversarial instances can be resolved by multiple models backing each other. In essence, this is the motivation of this work.

Proposed Work

In this work, I like to share my observations focusing on strength of the ensembles against adversarial instances. This is just a toy example with so much short-comings but I hope it'll give the idea with some emiprical evidences.

As a summary, this is what we do here;

  • Train a baseline MNIST ConvNet.
  • Create adversarial instances on this model by using cleverhans and save.
  • Measure the baseline model performance on adversarial.
  • Train the same ConvNet architecture including adversarial instances and measure its performance.
  • Train an ensemble of 10 models of the same ConvNet architecture and measure ensemble performance and support the backing argument stated above.

My code full code can be seen on github and I here only share the results and observations. You need cleverhans, Tensorflow and Keras for adversarial generation and you need PyTorch for ensemble training. (Sorry for verbosity of libraries but I like to try PyTorch as well after yeras of tears with Lua).

One problem of the proposed experiment is that we do not recreate adversarial instances for each model and we use a previously created one. Anyways, I believe the empirical values verifies my assumption even in this setting.  In addition,  I plan to do more extensive study as a future work.

Create adversarial instances.

I start by training a simple ConvNet architecture on MNIST dataset by using legitimate train and test set splits. This network gives 0.98 test set accuracy after 5 epochs.

For creating adversarial instances, I use fast gradient sign method which perturbs images using the derivative of the model outputs wrt the input values.  You can see a bunch of adversarial samples below.

The same network suffers on adversarial instances (as above) created on the legitimate test set. It gives 0.09 accuracy which is worse then random guess.

Plot adversarial instances.

Then I like to see the representational power of the trained model on both the normal and the adversarial instances. I do this by using well-known dimension reduction technique T-SNE. I first compute the last hidden layer representation of the network per instance and use these values as an input to T-SNE which aims to project data onto 2-D space. Here is the final projection for the both types of data.

Projection of normal test set.
Projection of adversarial instances.
Projection of both adversarial and normal test instances.

 

These projections clearly show that adversarial instances are just a random data points to the trained model and they are receding from the real data points creating what we call low probability regions for the trained model. I also trained the same model architecture by dynamically creating adversarial instances in train time then test its value on the adversarials created previously. This new model yields 0.98 on normal test set, 0.91 on previously created adversarial test set and 0.71 on its own dynamically created adversarial.

Above results show that including adversarial instances strengthen the model. However,  this is conforming to the low probability region argument. By providing adversarial, we let the model to discover low probability regions of adversarial instances. Beside, this is not applicable to large scale problems like ImageNet since you cannot afford to augment your millions of images per iteration. Therefore,  by assuming it works, ensembling is more viable alternative as already a common method to increase overall prediction performance.

Ensemble Training

In this part, I train multiple models in different ensemble settings. First, I train N different models with the same whole train data. Then, I bootstrap as I train N different models by randomly sampling data from the normal train set. I also observe the affect of N.

The best single model obtains 0.98 accuracy on the legitimate test set. However, the best single model only obtains 0.22 accuracy on the adversarial instances created in previous part.

When we ensemble models by averaging scores, we do not see any gain and we stuck on 0.24 accuracy for the both training settings. However, surprisingly when we perform max ensemble (only count on the most confident model for each instance), we observe 0.35 for uniformly trained ensemble and 0.57 for the bootstrapped ensemble with N equals to 50.

Increasing N raises the adversarial performance. It is much more effective on bootstrapped ensemble. With N=5 we obtain 0.27 for uniform ensemble and 0.32 for bootstrapped ensemble. With N=25 we obtain 0.30 and 0.45 respectively.

These values are interesting especially for the difference of mean and max ensemble. My intuition behind the superiority of maxing is maxing out predictions is able to cover up weaknesses of models by the most confident one, as I suggested in the first place. In that vein, one following observation is that adversarial performance increases as we use smaller random chunks for each model up to a certain threshold with increasing N (number of models in ensemble). It shows us that bootstrapping enables models to learn some of the local regions better and some worse but the worse sides are covered by the more confident model in the ensemble.

As I said before, it is not convenient to use previously created adversarials created by the baseline model in the first part. However, I believe my claim still holds. Assume that we include the baseline model in our best max ensemble above. Still its mistakes would be corrected by the other models. I also tried this (after the comments below) and include the baseline model in our ensemble. 0.57 accuracy only reduces to 0.55. It is still pretty high compared to any other method not seeing adversarial in the training phase.

Conclusion

  1. It is much more harder to create adversarials for ensemble of models with gradient methods. However, genetic algorithms are applicable.
  2. Blind stops of individual models are covered by the peers in the ensemble when we rely on the most confident one.
  3. We observe that as we train a model with dynamically created adversarial instances per iteration, it resolves the adversarials created by the test set. That is, since as the model sees examples from these regions it becomes immune to adversarials. It supports the argument stating low probability regions carry adversarial instances.

(Before finish) This is Serious!

Before I finish, I like to widen the meaning of this post's heading. Ensemble against adversarial!!

"Adversarial instances" is peculiar AI topic. It attracted so much interest first but now it seems forgotten beside research targeting GANs since it does not yield direct profit, compared to having better accuracy.

Even though this is the case hitherto, we need consider this topic more painstakingly from now on. As we witness more extensive and greater AI in many different domains (such as health, law, governace), adversarial instances akin to cause greater problems intentionally or by pure randomness. This is not a sci-fi scenario I'm drawing here. It is a reality as it is prototyped in [3]. Just switch a simple recognition model in [3]  with a AI ruling court for justice.

Therefore, if we believe in a future embracing AI as a great tool to "make the world better place!", we need to study this subject extensively before passing a certain AI threshold.

Last Words

This work overlooks many important aspects but after all it only aims to share some of my findings in a spare time research.  For a next post, I like study unsupervised models like Variational Encoders and Denoising Autoencoders by applying these on adversarial instances (I already started!). In addition, I plan to work on other methods for creating different types of adversarials.

From this post you should take;

  • References to adversarial instances
  • Good example codes waiting you on github that can be used many different projects.
  •  Power of ensemble.
  • Some of non-proven claims and opinions on the topic.

IN ANY WAY HOPE YOU LIKE IT ! 🙂

 

References

[1] Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep Neural Networks are Easily Fooled. Computer Vision and Pattern Recognition, 2015 IEEE Conference on, 427–436.

[2] Szegedy, C., Zaremba, W., & Sutskever, I. (2013). Intriguing properties of neural networks. arXiv Preprint arXiv: …, 1–10. Retrieved from http://arxiv.org/abs/1312.6199

[3] Papernot, N., McDaniel, P., Goodfellow, I., Jha, S., Celik, Z. B., & Swami, A. (2016). Practical Black-Box Attacks against Deep Learning Systems using Adversarial Examples. arXiv. Retrieved from http://arxiv.org/abs/1602.02697

[4] Goodfellow, I. J., Shlens, J., & Szegedy, C. (2015). Explaining and Harnessing Adversarial Examples. Iclr 2015, 1–11. Retrieved from http://arxiv.org/abs/1412.6572

Share

Paper Notes: Intriguing Properties of Neural Networks

Paper: https://arxiv.org/abs/1312.6199

This paper studies description of semantic information with higher level units of an network and blind spot of the network models againt adversarial instances. They illustrate the learned semantics inferring maximally activating instances per unit. They also interpret the effect of adversarial examples and their generalization on different network architectures and datasets.

Findings might be summarized as follows;

  1. Certain dimensions of the each layer reflects different semantics of data. (This is a well-known fact to this date therefore I skip this to discuss more)
  2. Adversarial instances are general to different models and datasets.
  3. Adversarial instances are more significant to higher layers of the networks.
  4. Auto-Encoders are more resilient to adversarial instances.

Adversarial instances are general to different models and datasets.

They posit that advertorials exploiting a particular network architectures are also hard to classify for the others. They illustrate it by creating adversarial instances yielding 100% error-rate on the target network architecture and using these on the another network. It is shown that these adversarial instances are still hard for the other network ( a network with 2% error-rate degraded to 5%). Of course the influence is not that strong compared to the target architecture (which has 100% error-rate).

Adversarial instances are more significant to higher layers of networks.

As you go to higher layers of the network, instability induced by adversarial instances increases as they measure by Lipschitz constant. This is justifiable observation with that the higher layers capture more abstract semantics and therefore any perturbation on an input might override the constituted semantic. (For instance a concept of "dog head" might be perturbed to something random).

Auto-Encoders are more resilient to adversarial instances.

AE is an unsupervised algorithm and it is different from the other models used in the paper since it learns the implicit distribution of the training data instead of mere discriminant features. Thus, it is expected to be more tolerant to adversarial instances. It is understood by Table2 that AE model needs stronger perturbations to achieve 100% classification error with generated adversarials.

My Notes

One intriguing observation is that shallow model with no hidden unit is yet to be more robust to adversarial instance created from the deeper models. It questions the claim of generalization of adversarial instances. I believe, if the term generality is supposed to be hold, then a higher degree of susceptibility ought to be obtained in this example (and in other too).

I also happy to see that unsupervised method is more robust to adversarial as expected since I believe the notion of general AI is only possible with the unsupervised learning which learns the space of data instead of memorizing things. This is also what I plan to examine after this paper to see how the new tools like Variational Auto Encoders behave againt adversarial instance.

I believe that it is really hard to fight with adversarial instances especially, the ones created by counter optimization against a particular supervised model. A supervised model always has flaws to be exploited in this manner since it memorizes things [ref] and when you go beyond its scope (especially with adversarial instances are of low probability), it makes natural mistakes. Beside, it is known that a neural network converges to local minimum due to its non-convex nature. Therefore, by definition, it has such weaknesses.

Adversarial instances are, in practical sense, not a big deal right now.However, this is akin to be a far more important topic, as we journey through a more advanced AI. Right now, a ML model only makes tolerable mistakes. However, consider advanced systems waiting us in a close future with a use of great importance such as deciding who is guilty, who has cancer. Then this is question of far more important means.

Share

Selfai: A Method for Understanding Beauty in Selfies

Selfies are everywhere. With different fun masks, poses and filters,  it goes crazy.  When we coincide with any of these selfies, we automatically give an intuitive score regarding the quality and beauty of the selfie. However, it is not really possible to describe what makes a beautiful selfie. There are some obvious attributes but they are not fully prescribed.

With the folks at 8bit.ai, we decided to develop a system which analyzes selfie images and scores them in accordance to its quality and beauty.  The idea was to see whether it is possible to mimic that bizarre perceptual understanding of human with the recent advancements of AI. And if it is, then let's make an application and let people use it for whatever purpose.  For now, we only have an Instagram bot @selfai_robot. You can check before reading.

Adriana Lima images ranked by Selfai model

Continue reading Selfai: A Method for Understanding Beauty in Selfies

Share

What I read lately

CATEGORICAL REPARAMETERIZATION WITH GUMBEL SOFTMAX
  • Link: https://arxiv.org/pdf/1611.01144v1.pdf
  • Continuous distribution on the simplex which approximates discrete vectors (one hot vectors) and differentiable by its parameters with reparametrization trick used in VAE.
  • It is used for semi-supervised learning.

 

DEEP UNSUPERVISED LEARNING WITH SPATIAL CONTRASTING
  • Learning useful unsupervised image representations by using triplet loss on image patches. The triplet is defined by two image patches from the same images as the anchor and the positive instances and a patch from a different image which is the negative.  It gives a good boost on CIFAR-10 after using it as a pretraning method.
  • How would you apply to real and large scale classification problem?

 

UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION

 

MULTI-RESIDUAL NETWORKS
  • For 110-layers ResNet the most contribution to gradient updates come from the paths with 10-34 layers.
  • ResNet trained with only these effective paths has comparable performance with the full ResNet. It is done by sampling paths with lengths in the effective range for each mini-batch.
  • Instead of going deeper adding more residual connections provides more boost due to the notion of exponential ensemble of shallow networks by the residual connections.
  • Removing a residual block from a ResNet has negligible drop on performance in test time in contrast to VGG and GoogleNet.
Share

Paper review - Understanding Deep Learning Requires Rethinking Generalization

Paper: https://arxiv.org/pdf/1611.03530v1.pdf

This paper states the following phrase. Traditional machine learning frameworks (VC dimensions, Rademacher complexity etc.) trying to explain how learning occurs are not very explanatory for the success of deep learning models and we need more understanding looking from different perspectives.

They rely on following empirical observations;

  • Deep networks are able to learn any kind of train data even with white noise instances with random labels. It entails that neural networks have very good brute-force memorization capacity.
  • Explicit regularization techniques - dropout, weight decay, batch norm - improves model generalization but it does not mean that same network give poor generalization performance without any of these. For instance, an inception network trained without ant explicit technique has 80.38% top-5 rate where as the same network achieved 83.6% on ImageNet challange with explicit techniques.
  • A 2 layers network with 2n+d parameters can learn the function f with n samples in d dimensions. They provide a proof of this statement on appendix section. From the empirical stand-view, they show the network performances on MNIST and CIFAR-10 datasets with 2 layers Multi Layer Perceptron.

Above observations entails following questions and conflicts;

  • Traditional notion of learning suggests stronger regularization as we use more powerful models. However, large enough network model is able to memorize any kind of data even if this data is just a random noise. Also, without any further explicit regularization techniques these models are able to generalize well in natural datasets.  It shows us that, conflicting to general belief, brute-force memorization is still a good learning method yielding reasonable generalization performance in test time.
  • Classical approaches are poorly suited to explain the success of neural networks and more investigation is imperative in order to understand what is really going on from theoretical view.
  • Generalization power of the networks are not really defined by the explicit techniques, instead implicit factors like learning method or the model architecture seems more effective.
  • Explanation of generalization is need to be redefined in order to solve the conflicts depicted above.

My take :  These large models are able to learn any function (and large does not mean deep anymore) and if there is any kind of information match between the training data and the test data, they are able to generalize well as well. Maybe it might be an explanation to think this models as an ensemble of many millions of smaller models on which is controlled by the zeroing effect of activation functions.  Thus, it is able to memorize any function due to its size and implicated capacity but it still generalize well due-to this ensembling effect.

Share

Why do we need better word representations ?

A successful AI agent should communicate. It is all about language. It should understand and explain itself in words in order to communicate us.  All of these spark with the "meaning" of words which the atomic part of human-wise communication. This is one of the fundamental problems of Natural Language Processing (NLP).

"meaning" is described as "the idea that is represented by a word, phrase, etc. How about representing the meaning of a word in a computer. The first attempt is to use some kind of hardly curated taxonomies such as WordNet. However such hand made structures not flexible enough, need human labor to elaborate and  do not have semantic relations between words other then the carved rules. It is not what we expect from a real AI agent.

Then NLP research focused to use number vectors to symbolize words. The first use is to donate words with discrete (one-hot) representations. That is, if we assume a vocabulary with 1K words then we create a 1K length 0 vector with only one 1 representing the target word. Continue reading Why do we need better word representations ?

Share

Object Detection Literature

<Please let me know if there are more works comparable to these below.>

R-CNN minus R

  • http://arxiv.org/pdf/1506.06981.pdf

 

FasterRCNN (Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks)

Keywords: RCNN, RoI pooling, object proposals, ImageNet 2015 winner.

PASCAL VOC2007: 73.2%

PASCAL VOC2012: 70.4%

ImageNet Val2 set: 45.4% MAP

  1. Model agnostic
  2. State of art with Residual Networks
    •  http://arxiv.org/pdf/1512.03385v1.pdf
  3. Fast enough for oflline systems and partially for inline systems
  • https://arxiv.org/pdf/1506.01497.pdf
  • https://github.com/ShaoqingRen/faster_rcnn (official)
  • https://github.com/rbgirshick/py-faster-rcnn
  • http://web.cs.hacettepe.edu.tr/~aykut/classes/spring2016/bil722/slides/w05-FasterR-CNN.pdf
  • https://github.com/precedenceguo/mx-rcnn
  • https://github.com/mitmul/chainer-faster-rcnn
  • https://github.com/andreaskoepf/faster-rcnn.torch

 

YOLO (You Only Look Once: Unified, Real-Time Object Detection)

Keywords: real-time detection, end2end training.

PASCAL VOC 2007: 63,4% (YOLO), 57.9% (Fast YOLO)

RUN-TIME : 45 FPS (YOLO), 155 FPS (Fast YOLO)

  1. VGG-16 based model
  2. End-to-end learning with no extra hassle (no proposals)
  3. Fastest with some performance payback relative to Faster RCNN
  4. Applicable to online systems
  • http://pjreddie.com/darknet/yolo/
  • https://github.com/pjreddie/darknet
  • https://github.com/BriSkyHekun/py-darknet-yolo (python interface to darknet)
  • https://github.com/tommy-qichang/yolo.torch
  • https://github.com/gliese581gg/YOLO_tensorflow
  • https://github.com/ZhouYzzz/YOLO-mxnet
  • https://github.com/xingwangsfu/caffe-yolo
  • https://github.com/frankzhangrui/Darknet-Yolo (custom training)

 

MultiBox (Scalable Object Detection using Deep Neural Networks)

Keywords: cascade classifiers, object proposal network.

  1. Similar to YOLO
  2. Two successive networks for generating object proposals and classifying these
  • http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Erhan_Scalable_Object_Detection_2014_CVPR_paper.pdf
  • https://github.com/google/multibox
  • https://research.googleblog.com/2014/12/high-quality-object-detection-at-scale.html

 

ION (Inside - Outside Net) 

Keywords: object proposal network, RNN, context features

  1. RNN networks on top of conv5 layer in 4 different directions
  2. Concate different layer features with L2 norm + rescaling
  • (great slide) http://www.seanbell.ca/tmp/ion-coco-talk-bell2015.pdf

 

UnitBox ( UnitBox: An Advanced Object Detection Network)

  • https://arxiv.org/pdf/1608.01471v1.pdf

 

DenseBox (DenseBox: Unifying Landmark Localization with End to End Object Detection)

Keywords: upsampling, hardmining, no object proposal, BAIDU

  1.  Similar to YOLO .
  2.  Image pyramid of input
  3.  Feed to network
  4. Upsample feature maps after a layer.
  5. Predict classification score and bbox location per pixel on upsampled feature map.
  6. NMS to bbox locations.
  • http://arxiv.org/pdf/1509.04874v3.pdf

 

MRCNN: Object detection via a multi-region & semantic segmentation-aware CNN model

PASCAL VOC2007: 78.2% MAP

PASCAL VOC2012: 73.9% MAP

Keywords: bbox regression, segmentation aware

  1. very large model and so much detail.
  2. Divide each detection windows to different regions.
  3. Learn different networks per region scheme.
  4. Empower representation by using the entire image network.
  5. Use segmentation aware network which takes the etnrie image as input.
  • http://arxiv.org/pdf/1505.01749v3.pdf
  • https://github.com/gidariss/mrcnn-object-detection

 

SSD: Single Shot MultiBox Detector

PASCAL VOC2007: 75.5% MAP (SSD 500), 72.1% MAP (SSD 300)

PASCAL VOC2012: 73.1% MAP (SSD 500)

RUN-TIME: 23 FPS (SSD 500), 58 FPS (SSD 300)

Keywords: real-time, no object proposal, end2end training

  1. Faster and accurate then YOLO (their claim)
  2. Not useful for small objects
  • https://arxiv.org/pdf/1512.02325v2.pdf
  • https://github.com/weiliu89/caffe/tree/ssd
Results for SSD, YOLO and F-RCNN
Results for SSD, YOLO and F-RCNN

 

CRAFT (CRAFT Objects from Images)

PASCAL VOC2007: 75.7% MAP

PASCAL VOC2012: 71.3% MAP

ImageNet Val2 set: 48.5% MAP

  • intro: CVPR 2016. Cascade Region-proposal-network And FasT-rcnn. an extension of Faster R-CNN
  • http://byangderek.github.io/projects/craft.html
  • https://github.com/byangderek/CRAFT
  • https://arxiv.org/abs/1604.03239

 

Hierarchical Object Detection with Deep Reinforcement Learning

hoddr

  1. Hierarchically propose object regions
  2. Do not share conv computation by RoI pooling
  3. Use direct proposals on the input image
  4. Conv sharing reduces the performance sue to spatial information loss (their claim)
  5. They do not give extensive experimentation !
  6. Given visual examples are simple without any clutter background !
  7. Still using Reinforcement Learning seems curious.
  • https://arxiv.org/pdf/1611.03718v1.pdf

 

Share

Paper review: CONVERGENT LEARNING: DO DIFFERENT NEURAL NETWORKS LEARN THE SAME REPRESENTATIONS?

paper: http://arxiv.org/pdf/1511.07543v3.pdf
code : https://github.com/yixuanli/convergent_learning

This paper is an interesting work which tries to explain similarities and differences between representation learned by different networks in the same architecture.

To the extend of their experiments, they train 4 different AlexNet and compare the units of these networks by correlation and mutual information analysis.

They asks following question;

  • Can we find one to one matching of units between network , showing that these units are sensitive to similar or the same commonalities on the image?
  • Is the one to one matching stays the same by different similarity measures? They first use correlation then mutual information to confirm the findings.
  • Is a representation learned by a network is a rotated version of the other, to the extend that one to one matching is not possible  between networks?
  • Is clustering plausible for grouping units in different networks?

Answers to these questions are as follows;

  • It is possible to find good matching units with really high correlation values but there are some units learning unique representation that are not replicated by the others. The degree of representational divergence between networks goes higher with the number of layers. Hence, we see large correlations by conv1 layers and it the value decreases toward conv5 and it is minimum by conv4 layer.
  • They first analyze layers by the correlation values among units. Then they measure the overlap with the mutual information and the results are confirming each other..
  • To see the differences between learned representation, they use a very smart trick. They approximate representations  learned by a layer of a network by the another network using the same layer.  A sparse approximation is performed using LASSO. The result indicating that some units are approximated well with 1 or 2 units of the other network but remaining set of units require almost 4 counterpart units for good approximation. It shows that some units having good one to one matching has local codes learned and other units have slight distributed codes approximated by multiple counterpart units.
  • They also run a hierarchical clustering in order to group similar units successfully.

For details please refer to the paper.

My discussion: We see that different networks learn similar representations with some level of accompanying uniqueness. It is intriguing  to see that, after this paper, these  are the unique representations causing performance differences between networks and whether the effect is improving or worsening. Additionally, maybe we might combine these differences at the end to improve network performances by some set of smart tricks.

One deficit of the paper is that they do not experiment deep networks which are the real deal of the time. As we see from the results, as the layers go deeper,  different abstractions exhumed by different networks. I believe this is more harsh by deeper architectures such as Inception or VGG kind.

One another curious thing is to study Residual netwrosk. The intuition of Residual networks to pass the already learned representation to upper layers and adding more to residual channel if something useful learned by the next layer. That idea shows some promise that two residual networks might be more similar compared to two Inception networks. Moreover, we can compare different layers inside a single Residual Network to see at what level the representation stays the same.

Share