# Duplicate Question Detection with Deep Learning on Quora Dataset

Quora recently announced the first public dataset that they ever released. It includes 404351 question pairs with a label column indicating if they are duplicate or not.  In this post, I like to investigate this dataset and at least propose a baseline method with deep learning.

Beside the proposed method, it includes some examples showing how to use Pandas, Gensim, Spacy and Keras. For the full code you check Github.

## Data Quirks

There are 255045 negative (non-duplicate) and 149306 positive (duplicate) instances. This induces a class imbalance however when you consider the nature of the problem, it seems reasonable to keep the same data bias with your ML model since negative instances are more expectable in a real-life scenario.

When we analyze the data, the shortest question is 1 character long (which is stupid and useless for the task) and the longest question is 1169 character (which is a long, complicated love affair question). I see that if any of the pairs is shorter than 10 characters, they do not make sense thus, I remove such pairs.  The average length is 59 and std is 32.

There are two other columns "q1id" and "q2id" but I really do not know how they are useful since the same question used in different rows has different ids.

Some labels are not true, especially for the duplicate ones. In anyways, I decided to rely on the labels and defer pruning due to hard manual effort.

## Proposed Method

#### Converting Questions into Vectors

Here, I plan to use Word2Vec to convert each question into a semantic vector then I stack a Siamese network to detect if the pair is duplicate.

Word2Vec is a general term used for similar algorithms that embed words into a vector space with 300 dimensions in general.  These vectors capture semantics and even analogies between different words. The famous example is ;

`king - man + woman = queen.`

Word2Vec vectors can be used for may useful applications. You can compute semantic word similarity, classify documents or input these vectors to Recurrent Neural Networks for more advance applications.

There are two well-known algorithms in this domain. One is Google's network architecture which learns representation by trying to predict surrounding words of a target word given certain window size. GLOVE is the another methos which relies on co-occurrence matrices. GLOVE is easy to train and it is flexible to add new words out-side of your vocabulary. You might like visit this tutorial to learn more and check this brilliant use-case Sense2Vec.

We still need a way to combine word vectors for singleton question representation. One simple alternative is taking the mean of all word vectors of each question. This is simple but really effective way for document classification and I expect it to work for this problem too.   In addition,  it is possible to enhance mean vector representation by using TF-IDF scores defined for each word. We apply weighted average of word vectors by using these scores. It emphasizes importance of discriminating words and avoid useless, frequent words which are shared by many questions.

#### Siamese Network

I described Siamese network in a previous post. In short, it is a two way network architecture which takes two inputs from the both side. It projects data into a space in which similar items are contracted and dissimilar ones are dispersed over the learned space. It is computationally efficient since networks are sharing parameters.

## Implementation

Let's load the training data first.

For this particular problem, I train my own GLOVE model by using Gensim.

The above code trains a GLOVE model and saves it. It generates 300 dimensional vectors for words. Hyper parameters would be chosen better but it is just a baseline to see a initial performance. However, as I'll show this model gives performance below than my expectation. I believe, this is because our questions are short and does not induce a semantic structure that GLOVE is able to learn a salient model.

Due to the performance issue and the observation above, I decide to use a pre-trained GLOVE model which comes free with Spacy. It is trained on Wikipedia and therefore, it is stronger in terms of word semantics. This is how we use Spacy for this purpose.

Before going further, I really like Spacy. It is really fast and it does everything you need for NLP in a flash of time by hiding many intrinsic details. It deserves a good remuneration.  Similar to Gensim model, it also provides 300 dimensional embedding vectors.

The result I get from Spacy vectors is above Gensim model I trained. It is a better choice to go further with TF-IDF scoring.  For TF-IDF, I used scikit-learn (heaven of ML).  It provides TfIdfVectorizer which does everything you need.

After we find TF-IDF scores, we convert each question to a weighted average of word2vec vectors by these scores. The below code does this for just "question1" column.

Now, we are ready to create training data for Siamese network. Basically, I've just fetch the labels and covert mean word2vec vectors to numpy format. I split the data into train and test set too.

In this stage, we need to define Siamese network structure. I use Keras for its simplicity. Below, it is the whole script that I used for the definition of the model.

I share here the best performing network with residual connections. It is a 3 layers network using Euclidean distance as the measure of instance similarity. It has Batch Normalization per layer. It is particularly important since BN layers enhance the performance considerably. I believe, they are able to normalize the final feature vectors and Euclidean distance performances better in this normalized space.

I tried Cosine distance which is more concordant to Word2Vec vectors theoretically but cannot handle to obtain better results. I also tried to normalize data into unit variance or L2 norm but nothing gives better results than the original feature values.

Let's train the network with the prepared data. I used the same model and hyper-parameters for all configurations. It is always possible to optimize these but hitherto I am able to give promising baseline results.

## Results

In this section, I like to share test set accuracy values obtained by different model and feature extraction settings.  We expect to see improvement over 0.63 since when we set all the labels as 0, it is the accuracy we get.

These are the best results I obtain with varying GLOVE models. they all use the same network and hyper-parameters after I find the best on the last configuration depicted below.

• Gensim (my model) + Siamese: 0.69
• Spacy + Siamese :  0.72
• Spacy + TD-IDF + Siamese : 0.79

We can also investigate the effect of different model architectures.  These are the values following  the best word2vec model shown above.

• 2 layers net : 0.67
• 3 layers net + adam : 0.74
• 3 layers resnet (after relu BN) + adam : 0.77
• 3 layers resnet (before relu BN) + adam : 0.78
• 3 layers resnet (before relu BN) + adam + dropout : 0.75
• 3 layers resnet (before relu BN) + adam + layer concat : 0.79
• 3 layers resnet (before relu BN) + adam + unit_norm + cosine_distance : Fail

Adam works quite well for this problem compared to SGD with learning rate scheduling. Batch Normalization also yields a good improvement. I tried to introduce Dropout between layers in different orders (before ReLU, after BN etc.), the best I obtain is 0.75.  Concatenation of different layers improves the performance by 1 percent as the final gain.

In conclusion, here I tried to present a solution to this unique problem by composing different aspects of deep learning. We start with Word2Vec and combine it  with TF-IDF and then use Siamese network to find duplicates. Results are not perfect and akin to different optimizations. However, it is just a small try to see the power of deep learning in this domain. I hope you find it useful :).

• Switching last layer to FC layer improves performance to 0.84.
• By using bidirectional RNN and 1D convolutional layers together as feature extractors improves performance to 0.91. Maybe I'll explain details with another post.

# How to use Python Decorators

Decorators are handy sugars for Python programmers to shorten things and provides more concise programming.

For instance you can use decorators for user authentication for your REST API servers. Assume that, you need to auth. the user for before each REST calls. Instead of appending the same procedure to each call function, it is better to define decorator and tagging it onto your call functions.

Let's see the small example below. I hope it is self-descriptive.

```
"""
How to use Decorators:

Decorators are functions called by annotations
Annotations are the tags prefixed by @
"""

### Decorator functions ###
def helloSpace(target_func):
def new_func():
print "Hello Space!"
target_func()
return new_func

def helloCosmos(target_func):
def  new_func():
print "Hello Cosmos!"
target_func()
return new_func

@helloCosmos # annotation
@helloSpace # annotation
def hello():
print "Hello World!"

### Above code is equivalent to these lines
# hello = helloSpace(hello)
# hello = helloCosmos(hello)

### Let's Try
hello()

```

# Fighting against class imbalance in a supervised ML problem.

ML on imbalanced data

given a imbalanced learning problem with a large class and a small class with number of instances N and M respectively;

• cluster the larger class into M clusters and use cluster centers for training the model.
• If it is a neural network or some compatible model. Cluster the the large class into K clusters and use these clusters as pseudo classes to train your model. This method is also useful for training your network with small number of classes case. It pushes your net to learn fine-detailed representations.
• Divide large class into subsets with M instances then train multiple classifiers and use the ensemble.
• Hard-mining is a solution which is unfortunately akin to over-fitting but yields good results in some particular cases such as object detection. The idea is to select the most confusing instances from the large set per iteration. Thus, select M most confusing instances from the large class and use for that iteration and repeat for the next iteration.
• For specially batch learning, frequency based batch sampling might be useful. For each batch you can sample instances from the small class by the probability M/(M+N) and N/(M+N) for tha large class so taht you prioritize the small class instances for being the next batch. As you do data augmentation techniques like in CNN models, mostly repeating instances of small class is not a big problem.

Note for metrics, normal accuracy rate is not a good measure for suh problems since you see very high accuracy if your model just predicts the larger class for all the instances. Instead prefer ROC curve or keep watching Precision and Recall.

Please keep me updated if you know something more. Even, this is a very common issue in practice,  still hard to find a working solution.

# devil in the implementation details

I was hassling with interesting problem lately. I trained a custom deep neural network model with ImageNet and ended up very good results at least on training logs.  I used Caffe for all these. Then, I ported my model to python interface and give some objects to it. Boommm!not working and even raised random prob values like it is not even trained for 4 days. It was really frustrating. After a dozens of hours I discovered that "Devil is in the details" .

I was using one of the Batch Normalization ("what is it ? "little intro here ) PR that is not merged to master branch but seems fine.  Then I found that interesting problem. The code in the branch computes each batch's mean by only looking at that batch. When we give only one example at test time, then the mean values are exactly the values of this particular image. This disables everything and the net starts to behave strangely. After a small search I found the solution which uses moving average instead of exact batch average. Now, I am at the stage of implementation. The puchcard is, do not use any PR which is not merged to master branch, that simple 🙂

# Some Useful Machine Learning Libraries.

Especially, with the advent of many different and intricate Machine Learning algorithms, it is very hard to come up with your code to any problem. Therefore, the use of a library and its choice is imperative provision before you start the project. However, there are many different libraries having different quirks and rigs in different languages, even in multiple languages so that choice is not very straight forward as it seems.

Before you start, I strongly recommend you to experiment the library of your interest so as not to say " Ohh Buda!" at the end. For being a simple guide, I will point some possible libraries and signify some of them as my choices with the reason behind.

# Sorting strings and Overriding std::sort comparison

At that post, I try to illustrate one of the use case of comparison overriding for std::sort on top of a simple problem. Our problem is as follows:

Write a method to sort an array of strings so that all the anagrams are next to each other.

# Extracting a sub-vector at C++

Suppose you have a vector array at C++ and you want to extract a sub-vector given some range. There is a simple illustration one of the possible way to do.

# Project Euler - Problem 14

Here is one again a very intricate problem from Project Euler. It has no solution sheet as oppose to the other problems at the site. Therefore there is no consensus on the best solution.

Below is the problem: (I really suggest you to observe some of the example sequences. It has really interesting behaviours. 🙂 )

The following iterative sequence is defined for the set of positive integers:

n n/2 (n is even)
n 3n + 1 (n is odd)

Using the rule above and starting with 13, we generate the following sequence: Continue reading Project Euler - Problem 14

# Project Euler - Problem 13

Here we have another qualified problem from Project Euler. You might want to work out the problem before see my solution.

The basic idea of my solution is to not use all the digits of the given numbers, instead extract the part of the each number that is necessary to sum up to conclude the first 10 digits of the result. I try to explain my approach at the top of the source code with my lacking MATH english. If you have any problem for that part please leave me a comment. Continue reading Project Euler - Problem 13

# Project Euler - Problem 12

As a 2 years researcher, I feel a bit rusty to code.  I search a good set of execises to hone my abilities again and I stumbled upon Project Euler. This site hosts increasing number of very well formed algorithmic problems and discussions. It ranges very basic problems to very high level ones, requiring profound knowledge and practice.

After that intro. I want to introduce one of the example question from Project Euler. NOTE THAT, IF YOU ALREADY KNOW THE SITE AND YOU TRY TO SOLVE THAT PROBLEM, DO NOT CHEAT YOURSELF.

Here is the problem statement we try to solve. Continue reading Project Euler - Problem 12