Tag Archives: ICLR 2016


paper: http://arxiv.org/abs/1511.06422
code: https://github.com/yobibyte/yobiblog/blob/master/posts/all-you-need-is-a-good-init.md

This work proposes yet another way to initialize your network, namely LUV (Layer-sequential Unit-variance) targeting especially deep networks.  The idea relies on lately served Orthogonal initialization and fine-tuning the weights by the data to have variance of 1 for each layer output.

The scheme follows three stages;

  1.  Initialize weights by unit variance Gaussian
  2.  Find components of these weights using SVD
  3.  Replace the weights with these components
  4.  By using minibatches of data, try to rescale weights to have variance of 1 for each layer. This iterative procedure is described as below pseudo code.
FROM the paper. Pseudo code of the initialization scheme.
FROM the paper. Pseudo code of the initialization scheme.


In order to describe the code in words, for each iteration we give a new mini-batch and compute the output variance. We compare the computed variance by the threshold we defined as Tol_{var} to the target variance 1.   If number of iterations is below the maximum number iterations or the difference is above Tol_{var} we rescale the layer weights by the squared variance of the minibatch.  After initializing this layer go on to the next layer.

In essence, what this method does. First, we start with a normal Gaussian initialization which we know that it is not enough for deep networks. Orthogonalization stage, decorrelates the weights so that each unit of the layer starts to learn from particularly different point in the space. At the final stage, LUV iterations rescale the weights and keep the back and forth propagated signals close to a useful variance against vanishing or exploding gradient problem , similar to Batch Normalization but without computational load.  Nevertheless, as also they points, LUV is not interchangeable with BN for especially large datasets like ImageNet. Still, I'd like to see a comparison with LUV vs BN but it is not done or not written to paper (Edit by the Author: Figure 3 on the paper has CIFAR comparison of BN and LUV and ImageNet results are posted on https://github.com/ducha-aiki/caffenet-benchmark).

The good side of this method is it works, for at least for my experiments made on ImageNet with different architectures. It is also not too much hurdle to code, if you already have Orthogonal initialization on the hand. Even, if you don't have it, you can start with a Gaussian initialization scheme and skip Orthogonalization stage and directly use LUV iterations. It still works with slight decrease of performance.

Paper review: Dynamic Capacity Networks

Paper: http://arxiv.org/pdf/1511.07838v7.pdf

Decompose the network structure into two networks F and G keeping a set of top layers T at the end. F and G are small and more advance network structures respectively. Thus F is cheap to execute with lower performance compared to G.

In order to reduce the whole computation and embrace both performance and computation gains provided by both networks, they suggest an incremental pass of input data through F to G.

Network F decides the salient regions on the input by using a gradient feedback and then these smaller regions are sent to network G to have better recognition performance.

Given an input image x, coarse network F is applied and then coarse representations of different regions of the given input is computed. These coarse representations are propagated to the top layers T and T computes the final output of the network which are the class predictions. An entropy measure is used to see that how each coerce representation effects the model's uncertainty leading that if a regions is salient then we expect to have large change of the uncertainty with respect to its representation.

We select top k input regions as salient by the hint of computed entropy changes then these regions are given to fine network G obtain finer representations. Eventually, we merge all the coarse, fine representations and give to top layers T again and get the final predictions.

At the training time, all networks and layers trained simultaneously. However, still one might decide to train each network F and G separately by using the same top layers T.  Authors posits that the simultaneous training is useful to keep fine and coarse representations similar so that the final layers T do not struggle too much to learn from two difference representation distribution.

I only try to give the overlooked idea here, if you like to see more detail and dwell into formulas please see the paper.

My discussion: There are some other works using attention mechanisms to improve final performance. However, this work is limited with the small datasets and small spatial dimensions. I really like to see whether it is also usefule for large problems like ImageNet or even larger.

Another caveat is the datasets used for the expeirments are not so cluttered. Therefore, it is easy to detect salient regions, even with by some algrithmic techniques. Thus, still this method obscure to me in real life problems.

Paper Review: Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?

There is theoretical proof that any one hidden layer network with enough number of sigmoid function is able to learn any decision boundary. Empirical practice, however, posits us that learning good data representations demands deeper networks, like the last year's ImageNet winner ResNet.

There are two important findings of this work. The first is,we need convolution, for at least image recognition problems, and the second is deeper is always better . Their results are so decisive on even small dataset like CIFAR-10.

They also give a good little paragraph explaining a good way to curate best possible shallow networks based on the deep teachers.

- train state of deep models

- form an ensemble by the best subset

- collect eh predictions on a large enough transfer test

- distill the teacher ensemble knowledge to shallow network.

(if you like to see more about how to apply teacher - student paradigm successfully refer to the paper. It gives very comprehensive set of instructions.)

Still, ass shown by the experimental results also, best possible shallow network is beyond the deep counterpart.

FROM PAPER, network performances. As you see with number of layers, performance is also getting better and Teacher is always better then student.
FROM PAPER, network performances. As you see with number of layers, performance is also getting better and Teacher is always better then student.


My Discussion:

I believe the success of the deep versus shallow depends not the theoretical basis but the way of practical learning of the networks. If we think networks as representation machine which gives finer details to coerce concepts such as thinking to learn a face without knowing what is an eye, does not seem tangible. Due to the one way information flow of convolution networks, this hierarchy of concepts stays and disables shallow architectures to learn comparable to deep ones.

Then how can we train shallow networks comparable to deep ones, once we have such theoretical justifications. I believe one way is to add intra-layer connections which are connections each unit of one layer to other units of that layer. It might be a recursive connection or just literal connections that gives shallow networks the chance of learning higher abstractions.

Convolution is also obviously necessary. Although, we learn each filter from the whole input, still each filter is receptive to particular local commonalities.  It is not doable by fully connected layers since it learns from the whole spatial range of the input.