Tag Archives: paper review

Paper Review: Do Deep Convolutional Nets Really Need to be Deep (Or Even Convolutional)?

There is theoretical proof that any one hidden layer network with enough number of sigmoid function is able to learn any decision boundary. Empirical practice, however, posits us that learning good data representations demands deeper networks, like the last year's ImageNet winner ResNet.

There are two important findings of this work. The first is,we need convolution, for at least image recognition problems, and the second is deeper is always better . Their results are so decisive on even small dataset like CIFAR-10.

They also give a good little paragraph explaining a good way to curate best possible shallow networks based on the deep teachers.

- train state of deep models

- form an ensemble by the best subset

- collect eh predictions on a large enough transfer test

- distill the teacher ensemble knowledge to shallow network.

(if you like to see more about how to apply teacher - student paradigm successfully refer to the paper. It gives very comprehensive set of instructions.)

Still, ass shown by the experimental results also, best possible shallow network is beyond the deep counterpart.

FROM PAPER, network performances. As you see with number of layers, performance is also getting better and Teacher is always better then student.
FROM PAPER, network performances. As you see with number of layers, performance is also getting better and Teacher is always better then student.


My Discussion:

I believe the success of the deep versus shallow depends not the theoretical basis but the way of practical learning of the networks. If we think networks as representation machine which gives finer details to coerce concepts such as thinking to learn a face without knowing what is an eye, does not seem tangible. Due to the one way information flow of convolution networks, this hierarchy of concepts stays and disables shallow architectures to learn comparable to deep ones.

Then how can we train shallow networks comparable to deep ones, once we have such theoretical justifications. I believe one way is to add intra-layer connections which are connections each unit of one layer to other units of that layer. It might be a recursive connection or just literal connections that gives shallow networks the chance of learning higher abstractions.

Convolution is also obviously necessary. Although, we learn each filter from the whole input, still each filter is receptive to particular local commonalities.  It is not doable by fully connected layers since it learns from the whole spatial range of the input.


ParseNet: Looking Wider to See Better



In this work, they propose two related problems and comes with a simple but functional solution to this. the problems are;

  1. Learning object location on the image with Proposal + Classification approach is very tiresome since it needs to classify >1000 patched per image. Therefore, use of end to end pixel-wise segmentation is a better solution as proposed by FCN (Long et al. 2014).
  2. FCN oversees the contextual information since it predicts the objects of each pixel independently. Therefore, even the thing on the image is Cat, there might be unrelated predictions for different pixels. They solve this by applying Conditional Random Field (CRF) on top of FCN. This is a way to consider context by using pixel relations.  Nevertheless, this is still not a method that is able to learn end-to-end since CRF needs additional learning stage after FCN.

Based on these two problems they provide ParseNet architecture. It declares contextual information by looking each channel feature map and aggregating the activations values.  These aggregations then merged to be appended to final features of the network as depicted below;

Figure from the paper. It shows the problem told above and proposed feature aggregation
Figure from the paper. It shows the problem told above and proposed feature aggregation


Their experiments construes the effectiveness of the additional contextual features.  Yet there are two important points to consider before using these features together. Due to the scale differences of each layer activations, one needs to normalize first per layer then append them together.  They L2 normalize each layer's feature. However, this results very small feature values which also hinder the network to learn in a fast manner.  As a cure to this, they learn scale parameters to each feature as used by the Batch Normalization method so that they first normalize and scale the values with scaling weights learned from the data.

The takeaway from this paper,  for myself, adding intermediate layer features improves the results with a correct normalization framework and as we add more layers, network is more robust to local changes by the context defined by the aggregated features.

They use VGG16 and fine-tune it for their purpose, VGG net does not use Batch Normalization. Therefore, use of Batch Normalization from the start might evades the need of additional scale parameters even maybe the L2 normalization of aggregated features. This is because, Batch Normalization already scales and shifts the feature values into a common norm.

Note: this is a hasty used article sorry for any inconvenience or mistake or stupidly written sentences.


Harnessing Deep Neural Networks with Logic Rules

paper: http://arxiv.org/pdf/1603.06318v1.pdf

This work posits a way to integrate first order logic rules with neural networks structures. It enables to cooperate expert knowledge with the workhorse deep neural networks. For being more specific, given a sentiment analysis problem, you know that if there is "but" in the sentence the sentiment content changes direction along the sentence. Such rules are harnessed with the network.

The method combines two precursor ideas of information distilling [Hinton et al. 2015] and posterior regularization [Ganchev et al. 2010].  We have teacher and student networks. They learn simultaneously.  Student networks directly uses the labelled data and learns model distribution P then given the logic rules, teacher networks adapts distribution Q as keeping it close to P but in the constraints of the given logic rules. That projects what is inside P to distribution Q bounded by the logic rules. as the below figure suggests.

harnessfolI don't like to go into deep math since my main purpose is to give the intuition rather than the formulation. However, formulation follows mathematical formulation of first order logic rules suitable to be in a loss function. Then the student loss is defined by the real network loss (cross-entropy) and the loss of the logic rules with a importance weight.

harnessfol_form1theta is the student model weight, the first part of the loss is the network loss and the second part is the logic loss. This function distills the information adapted by the given rules into student network.

Teacher network exploits KL divergence to approximate best Q which is close to P with a slack variable.

harnessfol_form2Since the problem is convex, solution van be found by its dual form with closed form solution as below.


So the whole algorithm is as follows;

harnessingfol_algoFor the experiments and use cases of this algorithm please refer to the paper. They show promising results at sentiment classification with convolution networks by definition of such BUT rules to the network.

My take away is, it is perfectly possible to use expert knowledge with the wild deep networks. I guess the recent trend of deep learning shows the same promise. It seems like our wild networks goes to be a efficient learning and inference rule for large graphical probabilistic models with variational methods and such rules imposing methods.  Still such expert knowledge is tenuous in the domain of image recognition problems.

Disclaimer; it is written hastily without any review therefore it is far from being complete but it targets the intuition of the work to make it memorable for latter use.



paper: http://arxiv.org/pdf/1603.05279v1.pdf

32 x memory saving and 58 x faster convolution operation. Only 2.9% performance loss (Top-1) with Binary-Weight version for AlexNet compared to the full precision version. Input and Weight binarization, XNOR-Net, scales the gap to 12.5%.

When the weights are binary convolution operation can be approximated by only summation and subtraction. Binary-Wight networks can fit into mobile devices with 2x speed-up on the operations.

To take the idea further, XNER-Net uses both binary weights and inputs. When both of them binary this allows convolution with XNOR and bitcount operation.  This enable both CPU time inference and training of even state of art models.

Here they give a good summary of compressing models into smaller sizes.

  1. Shallow networks --  estimate deep models with shallower architectures with different methods like information distilling.
  2. Compressing networks -- compression of larger networks.
    1. Weight Decay [17]
    2. Optimal Brain Damage [18]
    3. Optimal Brain Surgeon [19]
    4. Deep Compression [22]
    5. HashNets[23]
  3. Design compact layers -- From the beginning keep the network minimal
    1. Decomposing 3x3 layers to 2 1x1 layers [27]
    2. Replace 3x3 layers with 1x1  layers achieving 50% less parameters.
  4. Quantization of parameters -- High precision is not so important for good results in deep networks [29]
    1. 8-bit values instead of 32-bit float weight values [31]
    2. Ternary weights and 3-bits activation [32]
    3. Quantization of layers with L2 loss  [33]
  5. Network binarization --
    1. Expectation Backpropagation [36]
    2. Binary Connect [38]
    3. BinaryNet [11]
    4. Retaining of a pre-trained model  [41]



Binary-Weight-Net is defined as a approximateion of real-valued layers as W approx alpha B where alpha is scaling factor and B in [+1, -1]. Since values are binary we can perform convolution operation with only summation and subtraction.

I*W approx (I oplus B ) alpha

With the details given in the paper:

B = sign(W) and alpha = 1/n||W||_{l1}

Training of Binary-Weights-Net includes 3 main steps; forward pass, backward pass, parameters update. In both forward and backward stages weights are binarized but for updates real value weights are used to keep the small changes effective enough.

Binary-Weight-Net training cycle
Binary-Weight-Net training cycle



At this stage, the idea is extended and input values are also binarized to reduce the convolution operation cost by using only binary operation XNOR and bitcount.  Basically, input values are binarized as the precious way they use for weight values. Sign operation is used for binary mapping of values and scale values are estimated by l1 norm of input values.

C = sign(X^T)sign(W) = H^TB

gamma approx (1/n ||X||_{l1})(1/n||W||_{l1}) = beta alpha

where gamma is the scale vector and C is binary mapping of the feature mapping after convolution.

I am lazy to go into much more details. For more and implementation details have a look at the paper.

For such works, this is always pain to replicate the results.  I hope they will release some code work for being a basis.  Other then this, using such tricks to compress gargantuan deep models into more moderate sizes is very useful for small groups who has no GPU back-end like big companies or deploy such models into small computing devices.  Given such boost on computing time and small memory footprint, it is tempting  to train such models as a big ensemble and compare against single full precision model.


Error-Driven Incremental Learning with Deep CNNs

paper link

This paper posits a way of incremental training of a network where you have continuous flow of new data categories.  they propose two main problems related to that problem.  First, with increasing number of instances we need more capacitive networks which are hard to train compared to small networks. Therefore starting with a small network and gradually increasing its size seems feasible. Second is to expand the network instead of using already learned features in new tasks. For instance, if you would like to use a pre-trained ImageNet network to your specific problem using it as a sole feature extractor does not reflect the real potential of the network. Instead, training it as it goes wild with the new data is a better choice.

They also recall the forgetting problem when new data is proposed to a pre-trained model. Al ready learned features are forgotten with the new data and the problem.

The proposed method here relies on tree-like structures networks as the below figure depicts. The algorithm starts with a pretrained network L0 with K superclasses. When we add new classes (depicted green), we clone network L0 to leaf networks L1, L2 and branching network B. That is, all set of new networks are the exact clone of L0. Then B is the branching network which decides the leaf network to be activated for the given instance. Then activated leaf network leads to the final prediction for the given instance.

incremental1 For partition the classes the idea is to keep more confusing classes together so that the later stages of the network can resolve this confusion.  So any new set of classes with the corresponding instances are passed through the already trained networks and mostly active network by its softmax outputs is selected for that single category to be appended.  Another choice to increase the number of categories is to add the new categories to output layer only by keeping the network capacity the same. When we need to increase the capacity then we can branch the network again and this network stays as a branching network now. When we need to decide the leaf network following that branching network we sum the confidence values of the classes of each leaf network and maximum confidence network is selected as the leaf network.


While all these processes, any parameter is transfered from a branching network to leaf networks unless we have some mismatch between category units. Only these mismatch parameters are initialized randomly.

This work proposes a good approach for a scalable learning architecture with new categories coming in time. It both considers how to add new categories and increase the network capacity in a guided manner. One another good side of this architecture is that each of these network can be trained independently so that we can parallelize the training process.



My Notes - Weight Normalization

Deep Learning is defined as (Goodfellow et al., 2016) a sub-field of machine learning consists in learning models that are wholly or partially specified by a class of flexible differentiable functions.
In this study there are three main methods which are Weight Normalization, a new data depended initialization method and Mean Only Batch Normalization.
Weight normalization id formalized as below. Weight values w are decoupled by their norms  g and the direction v / ||v||. In this way they propose that SGD gives faster convergence.
They compare Weight Normalization with Batch Normalization. The main disadvantage they posit that BN has stochasticity due to varying data batches and one additional difference is that WN has lower computational burden compared to BN.
the second perk is data depended initialization of the network. They first give a initial minibatch to network and compute mean activation and std per layer. Then given the initial weight values sampled from mean 0 and std 0.05, they set g = 1 / std and b = - mean / std
One downside is that since this scheme is batch depended, it might suffer for the forthcoming batches with possible different data statistics. However, they say that this scheme works well in practice.
The  third perk is Mean Only Batch Normalization.
This is a lighter operation due to the avoidance of variance normalization. We might easily skip variance normalization because of the initialization scheme already applied it. One another upside is that avodiance of variance normalization provides less distracted gradient feedbacks and therefore better learning.
At the experiments side, they note that batch normalization is 16% slower than weight normalization whereas BN yields better progress especially for initial iterations.  As a final remark they note 7.31% CIFAR-10 performance which is the state of art up to my knowledge (not better then my best network :)) in terms of published works. they also experiment with different architectures like RNNs , reinforcement learning and others but please refer to the paper for more.

What I read for deep-learning

Today, I spent some time on two new papers proposing a new way of training very deep neural networks (Highway-Networks) and a new activation function for Auto-Encoders (ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF
CO-ADAPTING FEATURES) which evades the use of any regularization methods such as Contraction or Denoising.

Lets start with the first one. Highway-Networks proposes a new activation type similar to LTSM networks and they claim that this peculiar activation is robust to any choice of initialization scheme and learning problems occurred at very deep NNs. It is also incentive to see that they trained models with >100 number of layers. The basic intuition here is to learn a gating function attached to a real activation function that decides to pass the activation or the input itself. Here is the formulation

Screenshot from 2015-05-11 11:35:12

Screenshot from 2015-05-11 11:36:12

T(x,W_t ) is the gating function and H(x,W_H) is the real activation. They use Sigmoid activation for gating and Rectifier for the normal activation in the paper. I also implemented it with Lasagne and tried to replicate the results (I aim to release the code later). It is really impressive to see its ability to learn for 50 layers (this is the most I can for my PC).

The other paper ZERO-BIAS AUTOENCODERS AND THE BENEFITS OF CO-ADAPTING FEATURES suggests the use of non-biased rectifier units for the inference of AEs. You can train your model with a biased Rectifier Unit but at the inference time (test time), you should extract features by ignoring bias term. They show that doing so gives better recognition at CIFAR dataset. They also device a new activation function which has the similar intuition to Highway Networks.  Again, there is a gating unit which thresholds the normal activation function.

Screenshot from 2015-05-11 11:44:42

Screenshot from 2015-05-11 11:47:27

The first equation is the threshold function with a predefined threshold (they use 1 for their experiments).  The second equation shows the reconstruction of the proposed model. Pay attention that, in this equation they use square of a linear activation for thresholding and they call this model TLin  but they also use normal linear function which is called TRec. What this activation does here is to diminish the small activations so that the model is implicitly regularized without any additional regularizer. This is actually good for learning over-complete representation for the given data.

For more than this silly into, please refer to papers 🙂 and warn me for any mistake.

These two papers shows a new coming trend to Deep Learning community which is using complex activation functions . We can call it controlling each unit behavior in a smart way instead of letting them fire naively. My notion also agrees with this idea. I believe even more complication we need for smart units in our deep models like Spike and Slap networks.


FAME: Face Association through Model Evolution

Here, I summarize a new method called FAME for learning Face Models from noisy set of web images. I am studying this for my MS Thesis. To be a little intro to my thesis, the title is "Mining Web Images for Concept Learning" and it introduces two new methods for automatic learning of visual concepts from noisy web images. First proposed method is FAME and the other work was presented here before, that is namely ConceptMap and it is accepted for ECCV14 (self promotion :)).

Before I start, I should disclaim that FAME is not a fully furnished work and waiting your valuable comments. Please leave your statements about anything you find useful, ridiculous, awkward or great.

In this work, we grasp the problem of learning face models for public faces from images collected from web through querying a particular person name. Collected images are called weakly-labelled by the rough prescription of defined query. However, the data is very noisy even after face detection, with false detections or several irrelevant faces Continue reading FAME: Face Association through Model Evolution


Large data really helps for Object Detection ?

I stumbled upon a interesting BMVC 2012 paper (Do We Need More Training Data or Better Models for Object Detection? -- Zhu, Xiangxin, Vondrick, Carl, Ramanan, Deva, Fowlkes, Charless). It is claming something contrary to current notion of big data theory that advocates benefit of large data-sets so as to learn better models with increasing training data size. Nevertheless, the paper states that large training data is not that much helpful for learning better models, indeed more data is maleficent without careful tuning of your system !! Continue reading Large data really helps for Object Detection ?